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A PRECONDITIONED GMRES METHOD 
FOR NONSYMMETRIC OR INDEFINITE PROBLEMS 

JINCHAO XU AND XIAO-CHUAN CAI 

ABSTRACT. A preconditioning technique is proposed for nonsymmetric or in- 
definite linear systems of equations. The main idea in our theory, roughly 
speaking, is first to use some "coarser mesh" space to correct the nonpositive 
portion of the eigenvalues of the underlying operator and then switch to use a 
symmetric positive definite preconditioner. The generality of our theory allows 
us to apply any known preconditioners that were orginally designed for symmet- 
ric positive definite problems to nonsymmetric or indefinite problems, without 
losing the optimality that the original one has. Some numerical experiments 
based on GMRES are reported. 

1. INTRODUCTION 

In this paper, we are interested in developing efficient algorithms for solving 
nonsymmetric or indefinite linear systems of equations that are governed by 
a symmetric positive definite operator. A typical example is the linear system 
obtained by discretizing a second-order elliptic equation with first- or zero-order 
derivative terms by finite element or finite difference methods. If the coefficients 
of these lower-order terms are relatively not too large, the corresponding system 
is then dominated by its symmetric positive definite part. This property has been 
used in many of the preconditioned algorithms developed before (cf. [1, 6, 9]). 
The main idea there, however, is to use the symmetric positive definite part as 
a preconditioner and then solve the normal equation by the conjugate gradient 
method, in which the condition number of the system is squared. Though this 
is a reasonable approach in some cases, other efficient algorithms are possible. 
The generalized minimal residual (GMRES) method [7], among many other 
related algorithms, provides an alternative approach. 

This work was mainly motivated by the Ph.D. thesis of the second author. 
In one of the algorithms in [2], a nonsymmetric linear system obtained from 
the finite element discretization of an elliptic partial differential equation is pre- 
conditioned by an additive domain decomposition method which involves the 
solution of some local subproblems and also of a global coarse-mesh problem. 
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An interesting phenomenon observed is that the coarse-mesh solver for the orig- 
inal nonsymmetric problem is crucial for the success of the algorithm. In other 
words, the local problems do not need to be solved exactly in order to obtain 
optimal convergence; however, the coarse-mesh problem has to be solved ex- 
actly. Based on our experiences with multigrid methods (cf. [10]), we tend to 
believe that the reason is due to the fact that the symmetric positive definite 
part of the system governs the equation very well on the propagation of the 
high-frequency modes of the error, but very poorly on the low frequencies. The 
importance of the coarse-mesh solver then becomes clear, since its role (as in 
multigrid methods) is just to liquidate those troublesome low-frequency modes 
of the error. Instead of using the coarse-mesh solver plus local subproblem 
solvers, as in [2], we show that an optimal preconditioner can be constructed 
by the coarse-mesh solver plus any other optimal preconditioners designed for 
the symmetric part of the original operator. We note that the analysis of such 
a more general preconditioner is quite different from that in [2]. 

The rest of this paper is organized as follows. In ?2, we prove an abstract 
theorem based on a number of algebraic assumptions. In ?3, we demonstrate 
how the theory in ?2 can be applied to some algebraic iterative methods, such 
as GMRES. Some numerical examples involving second-order elliptic equations 
will be presented. Finally, some concluding remarks will be made in ?4. 

2. MAIN RESULT 

Let V be a finite-dimensional Hilbert space with an inner product (, .) and 
the corresponding norm 11 11 = (., .)1/2. For a given f E V, we are interested 
in solving the linear system of equations 

(1) ANU= f, 

where AN is the sum of two linear operators, AN = A + N. We assume that 
the equation (1) has a unique solution in V. Moreover, we make the following 
assumptions: 

A.1. The mapping A: V , V is symmetric and positive definite with respect 
to the inner product (. , .) We denote (AN, *), which defines an inner product 
on V, by (., ')A and its induced norm by 11 I1A. Furthermore, there exists a 
constant cl such that 

||U|| < ClHUH|A VU E V. 

A.2. The mapping N: V -) V satisfies 

(Nu, v) < C211UII 11V11A VU, V e V, 

where c2 is a positive constant. Note that we do not assume that (N., *) is 
symmetric with respect to the inner product (a, .). 

A.3. There exists a subspace VO c V such that for any given u E V, there 
exists a unique uo E VO such that 

(2) (ANUO, v) = (ANU, V) VV E VO. 

The above equation defines an operator PO: V -- VO so that Pou u uo. 
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Corresponding to the subspace VO introduced in Assumption A.3, we define 
a linear operator AO: VO -* VO and a projection Qo: V -* Vo by 

(3) (AOuO, vo) = (ANUO, VO) VUO, VO E Vo 

and 

(4) (Qou, vo)= (U, vo) Vu E V, Vo E Vo, 

respectively. By Assumption A.3, AO is invertible. 
Following [10], by the definitions of Po, AO, and QO, we can easily see that 

(5) AOPO = QOAN. 

Based on the operators AO and QO, we propose a preconditioner for AN as 
follows: 

(6) BN=A-'QO+,IB, 

where B is a given symmetric positive definite preconditioner for A, and /3 is 
a given positive constant depending on B. A proper choice of /3 is necessary, 
since both terms on the right-hand side of (6) should somehow be "balanced". 

Combining (5) with (6) gives that 

(7) BNAN = Po + fIBAN. 

To study the property of the operator BNAN, we introduce the following 
parameter: 

50 = sup 11 (I - Po)v. 

We begin our analysis with a simple lemma. 

Lemma 1. There holds 

11POUH1A < (1 + C250)HlUHJA VU E VI 

and 

1P1OU112 < 2(Pou, U)A + C232 OH1UH1A VU E V. 
Proof. By definitions, and A.2, 

POU112 = A(Pou, Pou) = (ANU, Pou) - (NPou, Pou) 
= (Au, Pou) + (N(I - Po)u, Pou) 
< H|UH|AH|POUHJA + C23OJHUJJAJJPOU1JA- 

The first inequality then follows. 
To prove the second inequality, we have 

flBOUHA = (PoU, U)A + (POU, POU - U)A 
= (POU, U)A + (N(I - Po)u, Pou) 
? (POU, U)A + C2 01JUIlAlIPOU||A 

? (POU, U)A + 2C232OUHA + AHPOUH|. 

The desired result then follows. El 

We now present the main result of the paper. 
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Theorem 1. There exist positive constants c, a, ,B and ,u, depending on AO 
and Al (the minimal and maximal eigenvalues of BA, respectively), such that, 
for the BN given by (6), if o0 < , 

(8) IIBNANUIIA < /|IUIIA Vu E V, 
and 

(9) (BNANU, U)A > a(U, U)A Vu E V. 

Proof. We first show the estimate (9). By A.2, we have 

IIUIj2 = (Au, u) < o-l(BAu, U)A 
< ?-' (BANU, U)A - 1- (Nu, BAU)A 

? ,3-' (BANu, U)A + c2Aj-l 1JuHI JBAu11A 

< J- 1 (BANU, U)A + C2 Aj 11U 11U|UA. 

Therefore, 
2 

< 2/-1 (BANU, U)A + C22 Al )|U|12. 

On the other hand, by A. 1, Lemma 1, and the definition of o0, we have 

<ul2 ? 2HPouH2 + 21Hu - PoU12 

< 2c2[2(Pou, U)A + C22ju11 U 1] + 260 IIU12 

= 4c (Pou, U)A + 2(C2C2 + 1)5211UI12 

Consequently, 

||U||A < 2XJ 1(BANU, U)A + 4C2c2 (Ri) (POU, U)A 

+ 2c2 (C1 C2 + 1)(50 11U1A- 

Let c > 0 be such that 

2C22 (,1 )(c c2 + 1)c2 = 

then, if 3o0 < , 

11U2 < 4AJ (BANU, U)A + 8C2c ) (POU, U)A. 

Estimate (9) then follows if we take 

8C2Al2 AOCl~i a=8c c2XA' 2c~c2A2' 

We are now in a position to prove (8). It is easy to see that 

11BANU11A < JjBAuHjA + JIBNuHlA < Al1 IUHJA + JjBNuHjA. 

By using Assumption A.2, we have 

IIBNuH12 = (ABNu, BNu) = (Nu, BABNu) 

< C211U|| JIBABNuHlA < C2X1fUj JIBNulHA. 
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Therefore, 
tIBNuIIA < C2Xl||Uj1 <? C1C2X111UIIA. 

Combining this with (7) and Lemma 1, we then get 

|IBNANUIIA ?< IIPOUIA + I3HBANIIA < (1 + C260 + /3C1C21)HIUHIA- 

Estimate (8) now follows with #u = 1 + c2c + 3cIc2A. * El 

3. APPLICATIONS AND NUMERICAL EXAMPLES 

The theory developed in this paper can be applied together with, among many 
others (see Remark 3.1 below), the GMRES method. The GMRES method, in- 
troduced in [7], is mathematically equivalent to the generalized conjugate resid- 
ual (GCR) method [8] and can be used to solve the linear system of algebraic 
equations 

(10) Gu = g, 

where G is a linear operator which may be nonsymmetric or indefinite, defined 
on a finite-dimensional vector space V, and g is a given vector in V. 

The method begins with an initial approximate solution uo E V and an 
initial residual ro = g - Guo. At the mth iteration, a correction vector Zm is 
computed in the Krylov subspace 

Xm(ro) = span{ro, Gro, ..., Gm-lro} 

which minimizes the residual, minzEX.(ro) Illg - G(uo + z)II for some appro- 
priate norm I I I . The mth iteration is then Um = uo + Zm . According to the 
theory of [8], the rate of convergence of the GMRES method can be estimated 
by the ratio of the minimal eigenvalue of the symmetric part of the operator to 
the norm of the operator. These two quantities are defined by 

CG = inf [l 'u] and CG =sup IIIGuIII 
u#/O [u, u] u#/O Illulil 

where [, ] is an inner product on V that induces the norm III We have 
the following theorem for the rate of convergence. 

Theorem 2 ([8]). If CG > 0, then the GMRES method converges, and at the mth 
iteration the residual is bounded as 

c2 m/2 

Ilrml < (1- A)t m 
G 

where rm = g - Gum. 

We shall now demonstrate how the results in the preceding section can be 
used with the GMRES method described above. We are interested in solving 
the equation (1). To this end, we use the preconditioner BN defined by (6) and 
consider the equivalent preconditioned system 

(11) BNANU=BNf. 

Therefore, we come to the equation (10) with G = BNAN and g = BNf. The 
next thing is to make a proper choice of the inner product [., .], which will 
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be (A., .). It follows from Theorems 1 and 2 that the corresponding GMRES 
method has the following convergence rate estimate: 

lirmilA < (1 - 
m/2 

IrolIIA 

Consequently, if B is a good preconditioner for A (e.g., the condition number 
of BA is uniformly bounded), a 2/T2 will be bounded from above by a positive 
number less than 1 (uniformly). As a result, the GMRES method for (1 1) will 
have a good convergence rate. 

Remark 3.1. There are many other conjugate gradient type methods obeying 
the estimate given in Theorem 2, such as the so-called Orthomin(k), GCR(k), 
and MR methods; we refer to [8] for details. Our preconditioning technique 
can thus be applied to these algorithms as well. 

We consider the Dirichlet boundary value problem 
()LU=F inQ, 

(12) U={ onO0Q, 

where Q is a bounded domain in 1R2 with boundary aOK, and L is a second- 
order elliptic operator: 

LU(x) = - E (aii(x) a (x ))+bj a( b+c(Ox) ?c(x)U(x). 

We assume that all the coefficients are sufficiently smooth and the matrix 
{aij(x)} is symmetric and uniformly positive definite for any x E Q. We also 
assume that (12) is uniquely solvable. 

If a finite element or finite difference method is used to solve equation (12), 
the discretized system will take the form of (1), with A corresponding to the 
symmetric positive definite part (namely the second-order terms) of the operator 
L, and N to the remaining (lower-order terms) parts. It is routine to show that 
the assumptions described in the preceding section are all satisfied (cf. [2, 4] 
for details). In particular, when using a finite element method, the subspace 
V0 corresponds to the space defined on a coarser triangulation of Q and the 
assumption that 50 is sufficiently small is equivalent to the assumption that the 
coarse triangulation is sufficiently fine. Examples of B can be obtained by using 
domain decomposition methods, multigrid methods, multilevel preconditioners 
such as hierarchical basis, and multilevel nodal basis preconditioners (cf. [1 1] 
for a discussion of these examples). 

In the following, we present some numerical experiments. The domain Q is 
the unit square in R2 , and the subdivision is shown in Figure 1. We use piece- 
wise linear finite element approximation in all the examples. The symmetric 
positive definite part will be preconditioned by the additive Schwarz method 
(including a coarse space solver) described in [5] with two grid sizes of overlap 
in both x- and y-directions. It is known, from [5], that the additive Schwarz 
preconditioner is optimal for symmetric positive definite operators, i.e., the 
constants AO and Al that appeared in Theorem 1 are independent of the mesh 
parameters used in the finite element subdivision. It follows from our theory 
that by adding a nonsymmetric (or indefinite) coarse-mesh operator to the prop- 
erly scaled optimal symmetric positive definite preconditioner, we can construct 
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FIGURE 1. A sample two-level triangulation of Q. The 
left figure shows the fine mesh and also the decomposi- 
tion of the domain into nine nonoverlapping subregions, 
and each is extended to a larger subregion as the shad- 
owed region. The right figure shows the coarse mesh. 

an optimal preconditioner for the original nonsymmetric or indefinite operator. 
In our experiments, a full GMRES method without restarting is used with an 
initial guess of zero. The stopping criterion is set to be jjrj11A/ljr011A < 10-5, 
where ri is the ith step residual. 

Our first example is a convection-diffusion equation, 

(13) l -AU+fi VUhF ins t 

t ~ ~~ = 0 on A2. 

F is so chosenfat ethe solution is exy sin(or) sin(g) . We use a 60 x 60 
grid, i.e., the fine-mesh size h = 1/60, and the results are summarized in 
Table 1. 

We first set riT = (10T 10). The iteration counts are shown in Table . 
with two different coarse-mesh sizes Hr but the same fine-mesh size h. The 
parameter I/ens (cf. (6)) ranges from 1.m0 to IO. 0. 

Note that a smaller H means a smallcriter is se obve that the algorithm 
speeds up if the size of H is decreased, which agrees with our theoretical estiu 
mates. An important fact we can see is that the algorithm is robust for the choice 
of fl , and a balance between the symmetric positive definite preconditioner and 
the nonsymmetric coarse-mesh preconditioner can be achieved easily, at least 
for this example. Ths is perhaps due to the fact that the convection terms are 
relatively small compared with the diffusion terms. 

TABLE 1. WT = (10, 10) 

param r 161.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 
H = 1/5, h = 1/60 |15 | 14 |14 16I 16 | I17 | 17 | 171 17 | 17 

H = 1/10, h = 1/60 13 112 12 112 112 12 112 12 113 1 13 
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TABLE 2. CT = (50, 50) 

coarse mesh 1/H 5 10 12 15 

optimal interval of 1/f| [1.0, 20.0] [3.0, 9.0] [7.0, 9.0] [7.0, 15.0] 

iteration count 30 24 21 18 

TABLE 3. ST - (10, 10) 

H 1/4 1/8 1/16 

5 = -30 19 16 14 

5 = -110 45 27 20 

In the next set of experiments, we set CT - (50, 50), and the results are 
shown in Table 2. 

Here the appropriate fl-values are obtained by testing a series of 1 //3 ranging 
from 0.1 to 20.0. It can be seen from the above results that if the coarse-mesh 
size H is small enough, then a well-chosen 18 can keep the iteration count 
small. The interesting thing is that the algorithm behaves almost the same for 
those I8 in the intervals shown in Table 2. This means that the best possible 
constant fi is not necessarily unique, but contained in a small interval. This 
phenomenon has not been well understood theoretically. Comparing this with 
the first example, we can see that as the convection terms are getting larger, the 
balancing parameter ,6 becomes more and more important in order to keep a 
low iteration count of the GMRES. Nevertheless, our numerical results have 
also shown that the algorithm is always convergent for fi = 1, although a few 
more iterations are needed sometimes. 

As the last example, we consider 

(14) 1f-AU+o.VU+5U=F inQ, 
1 U= 0 onOQ. 

The numerical results shown in Table 3 correspond to fi = 1, h = 1/128, the 
size of overlap = H *25%, and acTr= (10 ,10). 

A detailed comparison of this algorithm with other domain decomposition 
algorithms and the ILU preconditioners is given in [3]. 

4. CONCLUDING REMARKS 

The preconditioning technique proposed in this paper appears quite promis- 
ing for solving nonsymmetric or indefinite elliptic partial differential equations. 
If the coefficients of the nonsymmetric part of the partial differential operator 
are relatively not too big, we can always obtain a preconditioner by using any 
good preconditioner for the corresponding symmetric positive definite part to- 
gether with a coarse-mesh solver. Our approach allows one to adapt any existing 
codes developed for solving symmetric positive definite problems in construct- 
ing a preconditioner for nonsymmetric positive definite problems. Nevertheless, 
the robustness of the algorithm depends on a proper choice of fl . We shall fur- 
ther investigate how /3 can be selected for specific applications in future work. 



A PRECONDITIONED GMRES METHOD 319 

Finally, we would like to remark that a multiplicative version of the precondi- 
tioner proposed in this paper can give rise to a new class of iterative algorithms. 
For details, we refer to Xu [12]. 
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